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Appendix Section S1. Modeling the growth rate of cells in tissue homeostasis circuits.  17	  

 18	  

Appendix Figure S1. Adding carrying capacity K to the circuits preserves the conclusions of the study. 19	  

Simulation of an event where a strong activating mutant arises either in a circuit with monophasic control (A-C) 20	  

or biphasic control (D-F) with logistic growth with a carrying capacity K. The arrows mark the times when a 21	  

mutant with a strong activation of the sensing of y arises. As was the case for exponential growth, also under 22	  

logistic growth the monophasic circuit is susceptible to mutant invasion whereas the biphasic circuit is not. 23	  

 24	  

 In this section, we ask whether changing exponential growth to logistic growth in the 25	  

circuits affects the conclusions. In the main text, we analyzed circuits where cells Z adjust 26	  

their own growth rate as a function of a signal y, which, in turn, is affected by the size of the 27	  

tissue. The signal y affects the growth rate of cells by affecting either their proliferation or 28	  

removal rate, so we can model the dynamics of Z using the following equation: 29	  

𝑍 = 𝑍 ⋅ 𝜆! 𝑦 − 𝜆!(𝑦)         [1] 30	  



Where λ+ is the y-dependent proliferation rate of Z and λ- is the y-dependent removal rate of 31	  

Z. As discussed the main text, the feedback on Z through y can robustly maintain tissue size, 32	  

but is susceptible to the invasion of mis-sensing mutants. 33	  

The growth rate of Z can be either logistic or exponential. Exponential growth means 34	  

that the production rate λ+ does not depend on Z (for example λ+=y), and is relevant when the 35	  

cells are far from carrying capacity. When the cells are closer to carrying capacity, however, 36	  

a logistic model more appropriately models the dynamics of Z: 37	  

𝑍 = 𝑍 ⋅ 𝜆! 𝑦 ⋅ (1− !
!
)− 𝜆!(𝑦)         [1] 38	  

In which proliferation rate drops to zero as cells approach the carrying capacity K.  39	  

The conclusions of the manuscript hold both when the growth of the cells is logistic 40	  

or exponential (Appendix Figure S1): the biphasic circuit is resistant whereas the monophasic 41	  

circuit is not. 42	  
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Appendix Section S2. Modeling input delay in feedback homeostasis circuits. 44	  

 45	  

Appendix Figure S2. Simulation of an event where a strong activating mutant arises either in a circuit with 46	  

monophasic control (A-C) or biphasic control (D-F). The arrows mark the times when a mutant with a strong 47	  

activation of the sensing of y arises. The circuits are similar to the circuits depicted in Fig. 1B and Fig. 1F, 48	  

except that Z acts on y with delay modeled by an intermediate variable r with delay parameter τ. As was the case 49	  

without r, also here the monophasic circuit is susceptible to mutant invasion whereas the biphasic circuit is not. 50	  

 51	  

In the main text, we analyzed circuits where cells Z adjust their own growth rate as a 52	  

function of a signal y, which, in turn, is affected by the size of the tissue. Here, we consider 53	  

the case where y affects Z with a delay. Delays occur in endocrine circuits, where the level of 54	  

the regulated variable (e.g. blood glucose) is controlled with a delay relative to its regulating 55	  

hormone (insulin).  56	  

In the examples of Figure 1 we used the following equations to model the mutant 57	  

resistance of the circuits in Fig. 1BF: 58	  

𝑦 = 𝜇 ⋅ 𝑀 − 𝑍 + 𝑍!"# 𝑦         [1] 59	  



𝑍 = 𝑍 ⋅ 𝜆! 𝑦 − 𝜆!(𝑦)         [2] 60	  

We tested whether adding a delay to this system affects the resistance of monophasic or 61	  

biphasic circuits to sensing mutants. To do so, we modify the equations so they include an 62	  

intermediate variable r with a typical timescale τ:  63	  

𝑟 = 𝜏 ⋅ 𝑍 + 𝑍!"# − 𝑟         [1] 64	  

𝑦 = 𝜇 ⋅ 𝑀 − 𝑟𝑦         [2] 65	  

𝑍 = 𝑍 ⋅ 𝜆! 𝑦 − 𝜆!(𝑦)         [3] 66	  

The parameter τ represents the delay of the system. We tested the effect of 3 different 67	  

values of τ on the resistance to mutants (Appendix Figure S2) - τ=0.01 (slow), τ=1 68	  

(intermediate) and τ=100 (fast). For all these values of τ, an activating mutant invades the 69	  

monophasic circuit but does not invade the biphasic circuit. 70	  

 71	  
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Appendix Section S3. Simulation of glucose dynamics and the induction of a glucokinase 73	  

mutant.   74	  

 75	  

Appendix Figure S3. Simulation of a Tamoxifen-induced conditional knock-in of a 6-fold activating mutant on 76	  

GCK in beta cells. Dynamics were simulated using explicit equations for insulin and glucose dynamics. 77	  

 78	  

 Blood glucose levels are regulated by the hormone insulin which secreted by 79	  

pancreatic beta cells. The dynamics of glucose as a function of insulin can be described by 80	  

the following minimal model (Bergman, 1989): 81	  

𝐺 = 𝑢! + 𝑢(𝑡)− (𝐶 + 𝑆!𝐼) ⋅ 𝐺        [1] 82	  

where I is plasma insulin concentration, 𝑢! is endogenous production of glucose, 𝑢(𝑡) is 83	  

meal intake, C is glucose removal rate at zero insulin and Si is insulin sensitivity. Secretion of 84	  

insulin is proportional to beta cell functional mass β and is modeled by the equation: 85	  

𝐼 = 𝑝𝛽 ⋅ !!.!

!!.!!!!.!
− 𝛾𝐼        [2] 86	  

Where ρ(G) is a monotonically increasing function of G, γ is the insulin removal rate and p is 87	  

the insulin secretion per cell. Last, there is also a slow feedback where glucose controls the 88	  

dynamics of beta cell proliferation and removal (Karin et al., 2016): 89	  

𝛽 = 𝛽 𝜆!(𝐺)− 𝜆!(𝐺) = 𝛽 ⋅ 𝜆(𝐺)         [3] 90	  

The function h(G) has a stable fixed point at 𝐺 = 5𝑚𝑀. This slow feedback provides the 91	  

system with robustness to variation in Si,p since at steady state the dynamics of glucose to 92	  

any input does not depend on these parameters (e.g. the system shows dynamical 93	  

compensation (Karin et al., 2016)). 94	  



 The function h(G) also has an unstable fixed point at some 𝐺 ≫ 5, which results from 95	  

glucose-dependant toxicity (glucotoxicity). This unstable fixed point can cause paradoxical 96	  

beta cell death after an increase in glucose levels, which, in a self-reinforcing manner, further 97	  

increases glucose levels. This process may underlie type 2 diabetes (De Gaetano et al., 2008; 98	  

Ha et al., 2016; Karin et al., 2016; Topp et al., 2000). For our simulation, which is intended to 99	  

represent young mice, we set this unstable fixed point to G=13.5mM (Efanova et al., 1998; 100	  

Maedler et al., 2006). The exact level of the unstable fixed point is not important for our 101	  

conclusions, since a lower or higher unstable fixed point will work as well (as long as it is 102	  

significantly smaller than G=30mM). We used the following function to model glucose 103	  

dependent removal of beta cells: 104	  

𝜆! 𝐺 = 𝜇! ⋅
1

1+ 𝐺
4

! +
1

1+ 15
𝐺

!  

This death rate is similar to the glucose dependent death curve that is observed by Efanova et 105	  

al (Efanova et al., 1998). Glucose dependent proliferation rate was modelled as in Karin et al 106	  

(Karin et al., 2016): 107	  

𝜆! 𝐺 = 𝜇! ⋅
1

1+ 8.4
𝐺

!.! 

The values of µ+,µ- determine the turnover of beta cell functional mass and were set as: 108	  

𝜇! = 0.1 ⋅ 𝑑𝑎𝑦!! 

𝜇! = 0.2 ⋅ 𝑑𝑎𝑦!! 

These values correspond to a ~3% turnover of beta cell functional mass per day. All other 109	  

parameters of the 𝛽𝐼𝐺 model were set as follows (Karin et al., 2016): 110	  

Parameter	   Value	   Units	  

𝑢!	   1
30 mM	  min-‐1	  



𝐶	   10!! min-‐1	  

𝑆! 	   5 ⋅ 10!!	   ml	  μU-‐1	  min-‐1	  

𝑝	   0.03	   mg-‐1	  μU	  ml-‐1	  min-‐1	  

𝛼	   8.4	   mM	  

𝛾	   0.3	   min-‐1	  

 111	  

 A beta-cell mutant with k-fold activation on the sensing of glucose has both a k-fold 112	  

scaling of insulin secretion (𝜌 𝐺 → 𝜌(𝑘𝐺)) and a k-fold scaling in its response in terms of 113	  

growth rate (𝜆 𝐺 → 𝜆(𝑘𝐺)). Therefore, to simulate the Y214C mutant (that has a 6-fold 114	  

activation in glucose sensing) we simply replaced the secretion and growth functions 115	  

accordingly, using 𝑘 = 6. The combined equation for insulin secretion is the following: 116	  

𝐼 = 𝑝𝛽 ⋅
𝐺!.!

𝛼!.! + 𝐺!.! + 𝑝𝛽!"# ⋅
(𝑘𝐺)!.!

𝛼!.! + (𝑘𝐺)!.! − 𝛾𝐼 

 Finally, in the experiment the Cre-mediated transgene was induced by tamoxifen. We 117	  

simulated tamoxifen as converting normal beta cells to mutated beta cells: 118	  

𝛽 = 𝛽 𝜆! 𝐺 − 𝜆! 𝐺 − 𝑇  

𝛽!"# = 𝛽!"# 𝜆! 𝑘𝐺 − 𝜆! 𝑘𝐺 ) + 𝛽𝑇 

with T representing the concentration of tamoxifen in the blood. The dynamics of tamoxifen 119	  

were simulated as exponential degradation with a half-life of 16 hours (Robinson et al., 1991) 120	  

𝑇 = ! !"# !
!"⋅!"

𝑇.  121	  

The initial values used for the simulation: 122	  

Parameter	   Value	   Units	  

𝑇	   0.27 day-‐1	  

𝐺	   4.966667 mM	  



𝐼	   11.42	   μU	  ml-‐1	  

𝛽	   400	   mg	  

𝛽!"#	   0	   mg	  

 123	  

 We simulated the dynamics of the system both by (i) assuming a quasi-steady-state 124	  

for beta cell mass and solving equations [1],[2] to compute glucose levels, and (ii) explicitly 125	  

modeling the dynamics of glucose and insulin using equations [1], [2], which adds a delay to 126	  

the circuit. The model was simulated for 𝑡 = 40 ⋅ 24 ⋅ 60 minutes. The results from (i) are 127	  

provided in Fig. 1 in the main text and the results from (ii) are provided here as a 128	  

supplementary figure (Appendix Figure S3). Because beta cell mass changes much slower 129	  

than glucose, both methods yield highly similar results. 130	  
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Appendix Section S4. Derivation of the evolutionary stability of a circuit with biphasic 132	  

control.  133	  

Here we derive a formula that approximates the evolutionary stability of a circuit with 134	  

biphasic control. First, we provide a definition for the evolutionary stability of a circuit. 135	  

Definition 1.1. The strategy S of a cell is defined as its (daily) death and proliferation 136	  

probabilities for all inputs c: S={d(y),p(y)}. A strategy S’={d’(y),p’(y)} is denoted as an 137	  

alternative strategy to S if there are inputs y for which either 𝑝′ 𝑦 ≠ 𝑝 𝑦 ,𝑑′ 𝑦 ≠ 𝑑 𝑦 . 138	  

The strategy that is adopted by a population of cells, as well as the output response of these 139	  

cells to the input 𝑦, determines the function of the homeostatic circuit. 140	  

Definition 1.2. The evolutionary stability of a strategy S is defined as the probability that 141	  

given that the entire population of cells adopts S, it will not be invaded by an alternative 142	  

strategy S’  by time t. 143	  

If the entire population adopts a strategy S then for an alternative strategy S’ to invade 144	  

the circuit, it must first arise via mutation. The probability that S’ will arise via mutation from 145	  

a cell with a strategy S is the probability of a transition S →S’, which we denote it as µS(S’). 146	  

After a mutant arises, it must then invade the population. We denote the probability that such 147	  

a mutant will invade the population as ρS(S’).  148	  

For a circuit of N interacting cells with a turnover rate 𝜏!!, the probability that no 149	  

invading alternative strategy will arise by time t is: 150	  

𝜁! 𝑡 = 1− 𝜇! 𝑆 ′ 𝜌! 𝑆 ′

! ′

!!!!!

        [1] 

We estimate the invasion probability ρS(S’) by modeling the evolutionary dynamics of 151	  

the circuit using a Moran-like stochastic process with variable death and proliferation 152	  

probabilities. 153	  



Definition 1.2. Consider a population of cells with strategies {𝑆!,… , 𝑆!} with corresponding 154	  

death and proliferation probabilities Si={di,pi}. The Extended Moran Process (EMP) is 155	  

defined as follows: in each round, one strategy replicates and one strategy is eliminated. The 156	  

probability for elimination for strategy 𝑆! is !!
!!!

!!!
 and the probability for replication is 157	  

!!
!!!

!!!
. The relative fitness of a strategy is defined as 𝑟 = !!

!!
. 158	  

Lemma 1.1. The probability that a strategy 𝑆! will take over the population in the Extended 159	  

Moran Process is: 𝜌!! =
!!!!
!! !

!!
. 160	  

Proof. The proof is the same as the proof for the fixation probability of the standard Moran 161	  

Process (Nowak, 2006), by simply setting the death probability as non-constant. 162	  

Theorem 1.1. The probability that an alternative strategy S’={d’(y),p’(y)} invades a 163	  

homeostatic circuit is:   164	  

𝜌! 𝑆 ′ ≈
1− 1𝑟
1− 1

𝑟!
        [2] 

where 𝑟 = !′(!!")
!′(!!")

 with y=yST being the homeostatic set-point, and N being the number of cells 165	  

in the original population at steady-state. For a N>10 and r>1 this is approximately 166	  

𝜌! 𝑆 ′|𝑟 > 1 ≈ 1− !
!
  , while for r<1 the invasion probability approaches zero: 𝜌! 𝑆 ′|𝑟 <167	  

1 ≈ 0.  168	  

Proof. This result follows directly from Lemma 1.1 when we model the evolutionary 169	  

dynamics of the population using EMP. Note that the assumptions of EMP are not met 170	  

precisely – if cells with S’ proliferate more rapidly than cells with S die, then the population 171	  

size exceeds N and 𝑦 ≠ 𝑦!" before S’ invades the circuit. Nevertheless, for a mutant with a 172	  

fitness advantage, the highest probability of elimination occurs when its frequency is 173	  



relatively small, and thus when the overall number of cells is approximately N and the 174	  

𝑦 ≈ 𝑦!".  175	  

Next we analyze the transition probability 𝜇! 𝑆 ′  for some alternative strategy 𝑆 ′. We 176	  

assume that the transition 𝑆 → 𝑆 ′ results from random mutations in enzymes. Consider such 177	  

an enzyme with an output that is described by a Hill equation: 𝑓(𝑥) = 𝑣!
!

!! !!!! !. A 178	  

mutation that changes 𝐾 → 𝐾′ results in a scaled output response: 179	  

𝑓 ′ 𝑥 = 𝑣!"#
1

1+ 𝐾′𝑥!! ! = 𝑣!"#
1

1+ 𝐾 ⋅ (𝑥!!𝐾!!𝐾 ′) ! = 𝑓(𝑥!!𝐾!!𝐾 ′) 

We define 𝜒 = 𝐾!!𝐾 ′. In a circuit with biphasic control where the enzyme is upstream both 180	  

death and proliferation this mutation will result in an alternative strategy S’={d(𝜒y),p(𝜒y)}. 181	  

Other mutations that change 𝑣!"# or 𝑛 may have an effect on input sensing that is not 182	  

necessarily scaling (the effect depends on the structure of the signaling network), but for the 183	  

simplicity of the analysis we approximate the effect of every mutation as if it scales the input.  184	  

Thus, every mutation that affects sensing corresponds to some scaling value 𝜒. The 185	  

scaling 𝜒 can range from 𝜒 = 0 (locked off) to 𝜒 = ∞ (locked on) with 𝜒 = 1 being a neutral 186	  

mutation with respect to sensing. We define the probability density function 𝑃! 𝜒  over 187	  

𝜒 ∈ 0,∞  to approximate the probability that a mutant with a scaling 𝜒 will arise by 188	  

mutation from a population with strategy 𝑆. The measure 𝜇!(𝜒) is defined to be equal to 189	  

𝑃! 𝜒  for all 𝜒 ≠ 1 and 𝜇! 1 = 0. In addition, for every scaling 𝜒 we can infer the invasion 190	  

probability using [Theorem 1.1]: 191	  

𝑟 𝜒 =
𝑝 𝜒𝑦!"
𝑑 𝜒𝑦!"

        [3] 

 The evolutionary stability of the circuit can be inferred by integrating over all possible 192	  

values of 𝜒:  193	  

𝜁! 𝑡 = 𝑒!!
!!! !"# !!!! ! !! ! !"∞

!         [4] 



 To further simplify the analysis we use a zero-order approximation of 𝜇! 𝜒 = 𝜇! 194	  

around 𝜒 = 1, which is the relevant range where sensing mutants may have a fitness 195	  

advantage over wild-type cells. The value of 𝜇! depends both on DNA replication fidelity and 196	  

on the number of mutations that affect 𝜒, which may be, for instance, the number of 197	  

mutations that affect the kinetics or expression level of a rate-limiting enzyme.  198	  

 Let us now consider a circuit with biphasic control, an unstable fixed point 𝑦!"# and a 199	  

stable fixed point 𝑦!". The input range where proliferation exceeds death is 𝑦!" ≤ 𝑦 ≤ 𝑦!"# 200	  

and we assume a step change in that range so ! !
! !

= 𝜈 in that range. The population size is 201	  

𝑁 > 10 and we denote 𝛿 = !!"#
!!"

− 1. Thus, only for 1 < 𝜒 < 1+ 𝛿 is the invasion 202	  

probability 𝜌! 𝜒  non-negligible and is equal to 𝜌! 𝜒 = 1− 1
!
. The evolutionary stability of 203	  

this circuit is thus:  204	  

𝜁! 𝑡 = 𝑒
!!!1! log 1!!! 1!

1
! !"1!!

1 ≈ 𝑒!!
!1! !0 1!

1
! !"1!!

1  

= 𝑒!!
!1!"!0 1!

1
!  
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Appendix Section S5. Evolutionary stability of circuits that consist of multiple compartments. 206	  

 207	  

Appendix Figure S4. Architectures of compartmentalizations for intercellular communication. 208	  

 209	  

Tissues of multicellular organisms are often subdivided into compartments such as intestinal 210	  

crypts or pancreatic islets (Jo et al., 2007; Michor et al., 2003; Mintz, 1971). The number of 211	  

cells in each compartment is limited and cannot exceed a certain size, and thus they confine 212	  

invading mutants. We now extend our analysis to the case where the cells in a circuit are 213	  

subdivided into many compartments (Appendix Figure S4). In addition to the non-214	  

compartmentalized case (Appendix Figure S4A), there are two possible scenarios: either the 215	  

cellular communication is local to each compartment (Appendix Figure S4B, e.g. paracrine 216	  

signaling) or the communication is systemic, between compartments (Appendix Figure S4C, 217	  

e.g. the control of metabolites by endocrine tissues).  218	  

Local communication: If each compartment is of similar size then each compartment has the 219	  

same evolutionary stability ζ. This value ζ is the same as the expected fraction of 220	  

compartments that have an invading mutant by time t. 221	  

Systemic communication: Consider now the case where the communication occurs across the 222	  

entire population and the circuit has only one non-trivial stable fixed-point. If a mutant 223	  

invades a compartment then the homeostatic set point for all the cells in that compartment is 224	  

different from that of the rest of the population. Recall that in the non-compartmentalized 225	  



case the system can be at steady state only when all the cells of the population have the same 226	  

strategy (that is, the same scaling χ). This is not the case when the population is subdivided 227	  

into compartments. The reason for this is that while the cells in the invading compartment 228	  

may have a positive growth rate when the system is at its original homeostatic set-point, they 229	  

cannot grow beyond the limits of their compartment unless they acquire additional mutations. 230	  

Thus, if the fraction of invaded compartments is small then the original homeostatic set-point 231	  

is still maintained and the fraction of invaded compartments is the same as the evolutionary 232	  

stability of each compartment: ζ. 233	  

 What is the optimal compartment size for a population of N cells? As is the case in the 234	  

somatic evolution of cancer (Michor et al., 2003) there is a tradeoff between large and small 235	  

compartments. Large compartments are more robust against random drift while small 236	  

compartments are more robust against mutants with a fitness advantage. To illustrate why 237	  

this is the case we consider two extremes: very large and very small compartments. If the 238	  

compartments are very large then, in case an invading mutant arises, it takes over a large part 239	  

of the population and has a larger effect on circuit function. Very small compartments, on the 240	  

other hand, are more susceptible to being taken over by mutants that are neutral or have a 241	  

fitness disadvantage (Michor et al., 2003).  242	  

 243	  
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